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Axisymmetric pipeline transportation of oil and water is simulated numerically as
an initial value problem. The simulations succeed in predicting the spatially periodic
Stokes-like waves called bamboo waves, which have been documented in experiments
of Bai, Chen & Joseph (1992) for up-flow. The numerical scheme is validated against
linearized stability theory for perfect core–annular flow, and weakly nonlinear satu-
ration to travelling waves. Far from onset conditions, the fully nonlinear saturation
to steady bamboo waves is achieved. As the speed is increased, the bamboo waves
shorten, and peaks become more pointed. A new time-dependent bamboo wave is
discovered, in which the interfacial waveform is steady, but the accompanying velocity
and pressure fields are time-dependent. The appearance of vortices and the locations
of the extremal values of pressure are investigated for both up- and down-flows.

1. Introduction
Core–annular flow is a pressure-driven flow through a pipe of one fluid at the

core and another fluid in the annulus. This arrangement arises naturally for fluids
with markedly different viscosities, because higher viscosity material tends to become
encapsulated by lower viscosity material. An industrial application is the lubricated
pipelining of crude oil with the addition of water (Joseph & Renardy 1993; Joseph
et al. 1997). The purpose is to efficiently transport a very viscous liquid, which on
its own would require costly work, whereas when the viscous fluid just along the
wall is replaced by a much less viscous immiscible one, in this case water, then the
work required for transportation is significantly lowered. The ideal arrangement has a
perfectly cylindrical interface (figure 1a), but a wavy interface is also viable (figure 1b).
Regimes found experimentally in Bai, Chen & Joseph (1992) include bamboo waves
for up-flow, disturbed bamboo waves for both up-flow and down-flow, and corkscrew
waves in down-flow.

Our motivation for studying bamboo waves in vertical core–annular flow is that
these structures are well-documented in the experiments of Bai et al. (1992). Their oil
density is 0.905 g cm−3, oil viscosity is 6.01 P, water density is 0.995 g cm−3 and water
viscosity is 0.01 P. In the bamboo wave regime, trains of sharp crests are connected
by long filaments. The waves are axisymmetric and occur in a very robust regime
of up-flow, occupying a large area in the up-flow charts shown in figures 16.1–16.4
of Joseph & Renardy (1993). They maintain well-defined average wavelengths and
wave speeds. Possible imperfections include the overtaking of one crest by another
and the transient stretching of filaments between the waves. The average length
of a bamboo wave decreases monotonically as the oil input is increased for fixed
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Figure 1. (a) Schematic of core–annular flow. (b) Axisymmetric waves.

flow rate of water. Disturbed bamboo waves are observed when the driving pressure
gradient is relatively large and the flow is fast. They are observed in both up-flow and
down-flow. The main difference between these flows is that in down-flow, the driving
pressure gradient and gravity act in the same direction, making the heavier fluid,
water, fall and the buoyancy holds the oil back, while in up-flow, gravity hinders the
water and the oil is encouraged to flow upwards. Naturally, if the driving pressure
gradient is sufficiently strong and dominant, then the difference between up-flow
and down-flow vanishes. Thus the disturbed bamboo waves are observed in both
regimes.

The direct numerical simulation of bamboo waves is treated in Bai, Kelkar &
Joseph (1996), under the assumptions of steady flow, density matching, and an
infinitely viscous core. The core is modelled as a solid which responds to the pressure
forces in the water and deforms according to Newton’s law. They prescribe the wave
speed, the average core radius, and the hold-up ratio. Their iteration begins with
an assumed free surface shape, and during each iteration the pressure gradient and
wavelength are adjusted. They show their simulations compared with experimental
photographs in figures 6–8 of Bai et al. (1996). Their simulated waveforms typically
have peaks which are more rounded than the experimental form. In addition, the
simulated peaks have some asymmetry across them; for example, the steep fronts and
gradual tails of figure 7 and the ‘flying core flow’ of figure 2. The experimental data
at the higher speeds, however, show mirror symmetry at the peaks, pointed peaks and
flat troughs. This symmetric waveform is reminiscent of solitary waves which were
investigated in Renardy (1992) using the KdV equation. In this paper, we simulate
the fully coupled liquid–liquid flow, and succeed in predicting the rounded peaks at
low speeds and pointed peaks at higher speeds.

In §4, the linearized stability analysis of perfect core–annular flow (Bai et al. 1992;
Hu & Patankar 1995; Renardy 1997) is revisited in a summary format. The linearized
theory reveals the maximum growth rate mode, which has already been correlated
with experimental observations in Bai et al. (1992) and Joseph & Renardy (1993) for
the axisymmetric case. Since the observed wave speeds and wavelengths of the bamboo
wave regimes are close to the linear theory, the initial condition for our numerical
simulation is seeded with an eigenmode. It is also shown that as the Reynolds number
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is increased, the most unstable wavelength shortens. Our full numerical simulations
are initialized with an eigenmode, and are tracked through the exponential linear
growth rate and into the nonlinear regime. The most unstable eigenmode, as well as
less dangerous modes, are tracked.

In §5, the consideration of weakly nonlinear effects close to perfect core–annular
flow is summarized (Renardy 1997). When perfect core–annular flow loses stability at
a Hopf bifurcation at wavenumber α, an axially travelling wave solution may bifurcate
and saturate. The weakly nonlinear terms in the governing equations give rise to the
Landau coefficient, via a centre-manifold reduction method, thus determining whether
the travelling wave solution is stable/unstable. The Landau coefficient consists of
contributions from interactions between the primary mode and its second harmonic,
the mean flow mode, and a cubic self-interaction term. This analysis yields the
saturation waveform, which allows us to show the weakly nonlinear development
of the symmetric waveform at supercritical bifurcations, as precursors of bamboo
waves.

In §6, the pressure fields and streamlines are illustrated, and shown to correlate with
the cartoon of figure 15.5 of Joseph & Renardy (1993). The location of vortices and
pressure maxima/minima are examined in the light of the waveforms. A new time-
dependent bamboo wave is discovered. These bamboo waves would appear as steady
interface shapes, but the accompanying velocity field is unsteady. This typically arises
when the Reynolds number is increased. It is not surprising that a steady solution
would then lose stability to time-dependent and eventually chaotic solutions as the
flow transitions. However, it is surprising that the time-dependent bamboo waves
would appear to the eye to be steady. In §7, we examine bamboo waves in down-flow
and show examples of wave shapes which look like the up-flow cases. However, the
pressure fields are qualitatively different, and the manner in which the velocity field
changes with the Reynolds number is also different from the up-flow case. Although
these features of down-flow are interesting in their own right, the path forward in the
investigation for down-flow requires the treatment of non-axisymmetric core–annular
flow, which is the goal of future work.

2. Numerical scheme
2.1. Governing equations

The momentum equations are the axisymmetric Navier–Stokes equations:
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where Srr = 2µ(∂u/∂r), Sθθ = 2µ(u/r), Sxx = 2µ(∂v/∂x), Srx = µ(∂v/∂r + ∂u/∂x),
Sxr = Srx = µ(∂v/∂r + ∂u/∂x), The radial and axial components of velocity are
denoted u = (u, v), and the pressure by P . The body force F = (Fr, Fx) includes the
interfacial tension in the volume-of-fluid (VOF) formulation. Incompressibility yields:

∇ · u =
1

r

∂(ru)

∂r
+
∂v

∂x
= 0. (2.3)

The two fluids are immiscible. Density and viscosity are constant in each phase but
may be discontinuous at the interface. We use the VOF scheme. A volume fraction
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Figure 2. (a) Two-dimensional Cartesian mesh with variable cell sizes. (b) Location of variables in
a MAC mesh cell.

field C is used to represent and track the interface, which is transported by the
velocity field u:

∂C

∂t
+ u · ∇C = 0. (2.4)

This equation is used to calculate the density and viscosity. For cells overlying the
interface, the average values of density and viscosity are interpolated by the following
formulas:

ρ = Cρ1 + (1− C)ρ2, (2.5)

µ = Cµ1 + (1− C)µ2. (2.6)

2.2. Discretization

Our numerical method is based on those of Lafaurie et al. (1994), Li (1995), Coward
et al. (1997), Li, Renardy & Renardy (1998), and Gueyffier et al. (1999). Some adjust-
ments are necessary in order to adapt our two-dimensional code to the axisymmetric
case. The advection of the interface is treated with a Lagrangian method. Hence, no
adjustment is needed here, in contrast to some VOF methods based on the Eulerian
formulation, where the formulae for divergence are different for the two-dimensional
plane case and the axisymmetric case. Next, we solve the momentum equations by
a projection method. In core–annular flow, the pressure P is decomposed into two
parts, P = −fx + p, where f is the driving pressure gradient. We calculate first
an approximate velocity u∗ without the pressure gradient ∇p from the momentum
equations, assuming that the velocity un at time n∆t is known:

u∗ − un
∆t

= −un · ∇un +
1

ρ
(f + ∇ · (µS) + F + ρg)n, (2.7)

where the driving pressure gradient f is treated as a body force. In general, the
resulting flow field u∗ does not satisfy the continuity equation. However, we require
that ∇ · un+1 = 0 and

un+1 − u∗
∆t

= −∇p
ρ
. (2.8)

Taking the divergence of (2.8), we obtain a Poisson-like equation

∇ ·
(∇p
ρ

)
=
∇ · u∗

∆t
(2.9)

which is used to find the pressure field. Next, u∗ is corrected using this pressure field
and the updated solution un+1 is found from (2.8).
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We use an Eulerian mesh of rectangular cells having variables sizes, ∆xi for the ith
x-direction mesh size, ∆yj for the jth y-direction mesh size, as illustrated in figure 2.
The spatial discretization of the variables u, v and p is based on the MAC method. The
non-conservative scheme is chosen for the advective terms. The pressure and viscous
terms in the momentum equations are calculated using second-order central finite
differences, taking into account the variable mesh. In a MAC mesh, the variables
are not defined at the same location. This apparently sophisticated mesh presents
the advantage that in the resulting discrete Poisson equation, the pressure field is
not decoupled and its solution permits no checkerboard oscillation. Furthermore, no
numerical boundary condition is needed for the pressure if the one for the velocity
is given. As pointed out in Li et al. (1998), the solution of the discrete counterpart
of Poisson’s equation (2.9) is the most time-consuming part of our Navier–Stokes
solver and, consequently, an efficient solution is crucial for the performance of the
whole method. The multigrid method is arguably the most efficient: to reduce the
error in the discretization of Poisson’s equation by a constant, the multigrid method
requires a fixed number of iterations, independent of the mesh size. Our multigrid
Poisson solver for the two-dimensional case carries over to the axisymmetric case,
the only exception being that two coefficients in the radial direction of Poisson’s
equation need to be adjusted, because the formula for the divergence differs from
the two-dimensional plane case. The discretization of the incompressibility condition
(2.3) at cell (i, j) is

1

ri

ri+1/2ui+1/2 − ri−1/2ui−1/2

∆ri
+
vi,j+1/2 − vi,j−1/2

∆xj
= 0, (2.10)

where ri−1/2 denotes the left face coordinate of cell (i, j), ri+1/2 the right face coordinate

and ri = 1
2
(ri−1/2 + ri+1/2). Finally, the CSF technique (Brackbill, Kothe & Zemach

1992) for the treatment of interfacial tension has been adapted for the axisymmetric
case here.

2.3. Stability and semi-implicit Stokes solver

Two necessary conditions for stability of the above explicit projection method on the
MAC mesh (Peyret & Taylor 1990) are:

∆t 6
Re
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∆x2 + ∆y2
, ∆t 6

4

Re

1

(|u|+ |v|)2
,

where Re is the Reynolds number. The first inequality expresses the restriction
placed by viscous terms upon the time step size, while the second expresses the
restriction by convection terms. In this paper, we treat core–annular flow, using
the physical parameters for the experimental oil and water (Bai et al. 1992) as
described in the Introduction. The viscosity of oil is very different from that of
water, while the densities are similar. The Reynolds number for the water annulus
is roughly 600 times that of the core oil; the large Reynolds number in the water
and the much smaller Reynolds number in the oil impose severe restrictions on
the time step size, according to the stability criteria for the explicit formulation.
This suggests the implementation of the following implicit scheme for the viscous
terms.

We have developed an efficient and unconditionally stable method for the viscous
terms in two-dimensional plane flow (Li et al. 1998), which is adapted in the following
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way to the axisymmetric case:
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where the terms indicated by dots are the inertial terms which are treated explicitly.
In contrast to the two-dimensional scheme, ∂un+1/∂x is included in the implicit part
of (2.12). The scheme will not be unconditionally stable if it is in the explicit part,
because there is no term to compensate for it. Thus v is coupled to u implicitly, but
u depends on v only explicitly. The term ∂un+1/∂x in the implicit part of (2.12) does
not reduce the efficiency of our method. From equation (2.11), we first solve for un+1,
which is decoupled from vn+1. Next, we substitute for un+1 in the right-hand side of
equation (2.12) and solve for vn+1. The factorization technique discussed in Li et al.
(1998) applies also to our scheme (the error of factorization is of order O(∆t3)), so
we need only to solve a tridiagonal system and this results in a significant reduction
in computing and memory.

As far as the viscous terms are concerned, our semi-implicit scheme is uncondi-
tionally stable. To see this, let u ∼ exp(iαr + iβx) and let µ = 1, ρ = 1 for simplicity.
Equations (2.11)–(2.12) yield the following matrix equation from the viscous terms,
ignoring lower-order terms:(

1 + ∆t(2α2 + β2 + 2/r2 − 2αi/r) 0
−∆t(βi/r) 1 + ∆t(α2 + 2β2 − αi/r)
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The stability analysis is carried out as follows. In equation (2.13), the left-hand-side
matrix is essentially diagonal, because the off-diagonal term can be handled as a
perturbation, so that the equation has the form Aun+1 = Bun. Denote the eigenvalues
of A by λA1 and λA2 , and those of B by λB1 and λB2 ; then

|Aun+1| > min (|λA1 |, |λA2 |)|un+1|, and |Bun| 6 max (|λB1 |, |λB2 |)|un|.
Therefore

|un+1| 6 max(|λB1 |, |λB2 |)
min(|λA1 |, |λA2 |) |u

n| < |un|.
Specifically, the eigenvalues of the left-hand matrix in equation (2.13) are 1+∆t(2α2 +
β2 + 2/r2− 2αi/r) and 1 + ∆t(α2 + 2β2− αi/r), while the eigenvalues of the right-hand
matrix are 1 + ∆tαβ and 1−∆tαβ. From an elementary calculation, we can show that
the magnitude of both eigenvalues of A are larger than the magnitude of the two
eigenvalues of B . This stability is absolutely indispensable for our numerical study of
high-viscosity-ratio flows.

3. Core–annular flow equations and parameters
Consider the perfect core–annular flow (PCAF) of figure 1. In dimensional terms,

the pipe radius is denoted R2, the base velocity field is (0, V ∗i (r∗)), where asterisks
denote dimensional variables and i = 1, 2. The undisturbed interface position is
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r = R1, where P ∗2 −P ∗1 = T ∗/R1, T
∗ is the interfacial tension. The pressure gradient in

the axial direction is a constant: dP ∗/dx = −f∗. The following are four dimensionless
parameters:

m = µ2/µ1, a = R2/R1, ζ = ρ2/ρ1, K = (f∗ + ρ1g)/(f∗ + ρ2g), (3.1)

where K measures the ratio of driving forces in the core and annulus. Dimensionless
variables are chosen to be (r, x) = (r∗, x∗)/R1, (u, v) = (u∗, v∗)/V ∗0 (0), t = t∗V ∗0 (0)/R1,
P = P ∗/[ρ1V

∗2
0 (0)], where the centreline velocity is

V ∗0 (0) = (f∗ + ρ2g)
R2

1

4µ2

A, A = mK + a2 − 1 + 2(K − 1) loga. (3.2)

The dimensionless base velocity field is (0, V (r)) where

V (r) =

{
[a2 − r2 − 2(K − 1) log (r/a)]/A, 1 6 r 6 a (annulus)

1− mr2K/A, r < 1 (core).
(3.3)

An interfacial tension parameter is J = T ∗R1ρ1/µ
2
1. Reynolds numbers Rei are

defined by Rei = ρiV
∗
0 (0)R1/µi, i = 1, 2, where Re1/Re2 = m/ζ. In summary, PCAF is

characterized by six dimensionless parameters: m, a, ζ, J , K and Re1.
Perfect core–annular flow can lose stability to a variety of regimes. Several qual-

itatively different regimes of flow have been documented in the experiments of Bai
et al. (1992), which were conducted at 22◦C, with pipe diameter 3

8
in., m = 1/601,

ζ = ρw/ρo = 0.995/0.905 = 1.10, R2 = 3
16

in. = 0.47625 cm, T ∗ = 8.54 dyn cm−1,

J∗ = ρoT
∗R2/µ

2
o = 0.102, F = f/(ρ1g), where subscript w denotes water and o oil.

The parameters of Bai et al. (1992) are related to ours via

J =
ρoT

∗R1

µ2
o

=
J∗

a
, K =

f + ρ1g

f + ρ2g
=

1 + F

ζ + F
.

The experiments were conducted in a vertical inverted loop. The oil in vertical
flow is lighter than water so that buoyancy and the pressure gradient act in the
same sense in up-flow, where the core oil is observed to produce bamboo waves, and
in the opposite sense in down-flow, where the core is compressed and buckles into
corkscrew waves (Renardy 1997). The flow type is determined by two independent
parameters. In experiments, Bai et al. (1992) prescribe the volume flow rates of water
and oil, denoted by Qw and Qo, respectively. This is equivalent to prescribing the
two superficial velocities Vw and Vo. The superficial water velocity is defined by
Vw = Qw/A, and the superficial oil velocity by Vo = Qo/A. Here, A = πR2

2 is the
cross-sectional area of the pipe. The flow chart of Bai et al. (1992) for up-flow is
reproduced in figure 3 for convenience.

The hold-up ratio h, defined as the ratio of the input oil–water ratio to the
in situ oil–water ratio, is an important practical parameter for core–annular flow.
Experiments show that h is constant in up-flow and fast flows. The radius ratio a is
related to the flow rates via the hold-up ratio h. If the flow is perfectly core–annular,
then the dimensionless cross-sectional areas are πa2 and π, respectively, which yields
the in situ water-to-oil ratio, a2 − 1 = hQw/Qo simply by definition of h. Therefore,

a =
√

1 + hQw/Qo =
√

1 + hVw/Vo. (3.4)

In order to set up the parameters and compare to experiments, Bai et al. (1992)
determine the perfect core–annular flow which would correspond to the prescribed
values of two experimental parameters: Vw and Vo, or a and Vo. Perfect core–annular
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Figure 3. This flow chart (from Bai et al. 1992) shows the types of flow that arise in up-flow as
function of the superficial oil velocity Vo and the superficial water velocity Vw.

flow is determined by two independent quantities in both experiments and theory.
Two alternative methods were used in Bai et al. (1992) to make the comparison: by
fixing values of Vo and Vw, or by fixing values of Vo and a. There may be a sizable
difference between these two approaches for the same experiment. As an example,
take flow regime no. 1 of figure 3, where Vo = 1.06 ft s−1 and Vw = 0.55 ft s−1:
the value of a calculated from equations (18.15) and (18.16) of Joseph & Renardy
(1993) is 1.61, but the experimental value of a (from formula (3.4) with hold-up
ratio h = 1.39) is 1.31. Although they claim to have consistent results from the
two methods, in our opinion, their comparisons by fixing Vo and a provide better
agreement with experiments with regard to wave speed. The physical parameters
that define PCAF will change with the flow in the nonlinear regime, so that there
is no reason that a PCAF with parameters Vo and Vw would evolve to nonlinear
waves keeping the same values of Vo and Vw. However, since the flow is incom-
pressible, the quantities of oil and water must be conserved. It is hence judicious
to prescribe the parameter a instead of Vw. Conservation of volume also implies
that the parameter a will remain constant as the PCAF evolves into the nonlin-
ear regime. The evolution is, however, more complicated for superficial velocities
Vo and Vw. In the cases we study here, water is heavier than the oil and moves
slowly in comparison with the oil in the upward direction. As the PCAF evolves
into the nonlinear regime, the interface shape waves and the friction between oil
and water increases. As a consequence, the oil core could be slowed down signifi-
cantly by water. The evolution into the nonlinear regime has two opposing effects
on the water motion. On the one hand, the wavy interface traps water in its troughs
and carries the water with it, which tends to increase the water volume flow rate.
On the other hand, the oil drag force is one of the important factors contributing
to the water volume flow rate. As the oil core is slowed down in the nonlinear
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Figure 4. Re1 = 0.93, a = 1.28, m = 0.00166, ζ = 1.1, J = 0.0795, K = −0.4552. Theoretical linear
growth rates vs wavenumber for azimuthal modes 0,1,2. Higher modes are stable.

regime, this force decreases, which tends to reduce the water volume flow rate.
With these mechanisms acting on the flow rate, it is not obvious what the corre-
spondence is, between the PCAF Vo and the Vo in the resulting nonlinear flow.
Thus, simply prescribing the experimental quantities Vo and Vw to initialize PCAF
is naive.

4. Numerical study of small perturbations
In this Section, we study the linear growth regime of perfect core–annular flow.

The base solution is perturbed so that the total solution is (u, V + v), P + p, the
interface position is 1 + δ(x, t), and perturbations are proportional to exp(iαx + σt)
(Renardy 1997). Experimental results for wave speeds and wavelengths have been
compared with linear theory (Bai et al. 1992; Joseph & Renardy 1993), even though
the regimes are obviously highly nonlinear. We begin our numerical study with the
experimental figure 6 of Bai et al. (1996). The two quantities prescribed in this flow
are [Qw, Qo] = [200, 429] cm3 min−1. The parameters for the corresponding PCAF are
first calculated using the fixed values of Vo and a. The experimental hold-up ratio h
is 1.39 for this flow, and from equation (3.4), we obtain the corresponding value of
a = 1.28. The superficial oil velocity is Vo = 10 cm s−1. We can then calculate the other
parameters of PCAF flow via equation (18.15) of Joseph & Renardy (1993) and other
appropriate formulas. We obtained the parameters Re1 = 0.93, m = 0.00166, ζ = 1.1,
J = 0.0795 and K = −0.4552. The theoretical growth rates for azimuthal mode 0,
1 and 2 versus wavenumber are shown in figure 4. Higher modes are stabilized by
interfacial tension. The non-axisymmetric mode 1 attains the highest growth rate,
and hence a non-axisymmetric wave is expected to occur. However, mode 1 is only
a little more unstable than the axisymmetric mode. For a well-controlled experiment
in which the axisymmetric mode is favoured, bamboo waves may be observed. From
figure 4 we see that the growth rate of mode 0 reaches its maximum at wavenumber
α = 2.0. This is the most dangerous axisymmetric mode. Linear theory indicates
that the growth rate is Re(σ) = 0.1940 and the wave speed is c = 0.851 for this
wavenumber.



132 J. Li and Y. Renardy

20

0 10 20 30 40 50

(a)

–2

0 10 20 30 40 50

(b)

–2

0 10 20 30 40 50

(c)

Time

Figure 5. Plot of crest position (a) and log plots of the maximum of interface position (b), and the
maximum of the radial velocity U (c) against time for the flow Re1 = 0.93, a = 1.28, m = 0.00166,
ζ = 1.1, J = 0.0795, K = −0.4552 and α = 2.0. Theoretical linear growth rate for the interfacial
mode is 0.1940. Solid lines represents theoretical growth and circles represent the calculation. The
calculation is carried out on a 256× 256 mesh.

The growth rate predicted by linear theory for mode 0 with wavenumber 2.0 is
compared with the numerical simulation. We initialize our simulation with a very
small perturbation amplitude A(0) = 0.001, in order to keep the flow in the linear
regime for a relatively long time. Figure 5(a) shows the crest position vs. time. The
linear regime persists until roughly t = 25 where the numerical wave speed is 0.8369,
with 1.6% difference compared to the theoretical value. Figure 5(b) shows, on a log10-
linear scale, the evolution of the maximum amplitude A(t) with time. Until t = 25,
the numerical and theoretical growth rates agree, the difference between them being
1%, and the agreement zone is about two decades.The evolution of the maximum of
the radial velocity U with time is shown also in figure 5(c) and good agreement is
also obtained, the difference between them being 3%. This calculation is carried out
on a 256× 256 mesh. Recall that for two-layer Couette flow of fluids with moderate
viscosities at low speeds (Li et al. 1998), small perturbations tended to develop into
nonlinear fingers rather than to evolve according to linear theory. To our surprise, we
find that the growth rate from linear theory predicts very well the actual evolution of
small perturbations in this high-viscosity-ratio flow.

5. Weakly nonlinear bifurcation analysis
When weakly nonlinear effects are taken into account, the bifurcation from perfect

core–annular flow to one with axially travelling waves is described in the Appen-
dices in Renardy (1997). This contains the derivation of the Landau equation and
definition of the operators. The governing equations, interface and boundary condi-
tions are represented schematically in the form LΦ = N2(Φ,Φ) + N3(Φ,Φ,Φ), where
L,N2,N3 are the linear, quadratic and cubic operators, respectively, and Φ is the
perturbation to the base flow. The perturbation solution Φ can be decomposed in the
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Figure 6. Up-flow, m = 0.00166, ζ = 1.1: (a) a = 1.61, α = 0.725, Re1 = 1, K = −2.030303,
J = 0.0633554, saturation amplitude 1.20; (b) a = 1.28, α = 2, Re1 = 0.93, K = −0.4552, J = 0.0795,
saturation amplitude 1.11.

form Φ = z1ζ1 + z̄1ζ̄1 + 2Re (z1z1ψ11 + z1z̄1χ11) + · · ·, where z1 is the complex time-
dependent amplitude function, ζ1 is the axisymmetric onset mode of wavenumber α
and eigenvalue σ, χ11 represents the secondary mean flow mode, ψ11 represents the
second harmonic, and the dots indicate terms of higher than quadratic order. The
dynamics projected onto the centre manifold yield dz1/dt = (iω+ ε1)z1 + β1(λ)|z1|2z1,
where the Landau coefficient is β1(λ) = (b1, 2N2(ζ̄1, ψ11)+4N2(ζ1, χ11)+3N3(ζ1, ζ1, ζ̄1)),
the bifurcation parameter ε1 is real, and b1 is the eigenfunction to the adjoint prob-
lem (Renardy 1997). In the weakly nonlinear theory, the primary mode interacts
with itself and its complex conjugate through the quadratic and cubic nonlineari-
ties in the governing equations, thus generating a secondary mean flow mode χ11

and a second harmonic ψ11. These in turn interact with the primary mode through
the quadratic terms, and are balanced with the terms generated by the primary
mode interacting with itself in the cubic terms of the equations. The first term in
β1 arises from an interaction of the primary mode with the second harmonic, the
second term is an interaction of the primary mode with the secondary mean flow,
and the third term represents a cubic self-interaction. To reconstruct the nonlinear
waveform, we refer to the interface perturbation component h in the eigenfunction
ζ1 and the second harmonic ψ11. We may picture the total interface perturbation
as

Φh = 2Re[z1(t)h(ζ1) exp(iαx+ iImσt) + z2
1(t)h(ψ11) exp(2iαx+ 2iImσt)], (5.1)

where ψ11 contributes sin 2αx to the interface shape. The travelling wave solution
is predicted to saturate when the real part of the Landau coefficient β1 is nega-
tive. When the travelling wave solution is denoted z1(t) = exp(iωt)Z0, it saturates
at

|Z0| =
√−Reσ/Reβ1. (5.2)

The total saturation amplitude for the weakly nonlinear waveform is the maximum
of Φh.

The cases we illustrate in §6 for up-flow are for viscosity ratio m = 0.00166,
density ratio ζ = 1.1. The linearized stability theory of the previous Section is used
to determine the maximum growth rate mode. At that mode, the calculation for
the saturation waveform is performed. The bifurcations are supercritical and the
bifurcated travelling wave solutions are shown in Figure 6. As the Reynolds number
increases past onset and growth rates increase, we eventually expect the weakly
nonlinear theory to deviate from the simulations. Figure 6(a) corresponds to the
experimental situation of data point 1 on the flow chart figure 3 and discussed further
in §6. Figure 6(b) corresponds to the experimental situation of figure 6 of Bai et al.
(1996) discussed in §4. Both waveforms show the incipient bamboo wave structure
with symmetry across the peaks.
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α 0.5 1.0 1.5 1.75 2.0 2.5 3.0 4.0

Re(σ) 0.05324 0.1324 0.1815 0.1917 0.1940 0.1803 0.1505 0.0717
Speed c 0.3944 0.6655 0.7822 0.8205 0.8509 0.8952 0.9243 0.9694
Amplitude 0.2077 0.2005 0.1922 0.1776

Table 1. Re1 = 0.93, a = 1.28, m = 0.00166, ζ = 1.1, J = 0.0795, K = −0.4552, axisymmetric
mode. At each wavenumber, the theoretical linear growth rate and wave speed are given. The final
amplitudes of nonlinear bamboo waves are given for wavenumbers 1 to 2, relevant to experimental
length scales.

6. Direct simulation of the experimental regime
For a direct comparison with experiments, one should investigate the spatial evo-

lution of the core–annular flow. This approach has the advantage that we can
prescribe the experimental quantities Vo and Vw as entrance conditions. Unfortu-
nately, this kind of simulation is not yet possible due to the computational cost,
because the pipeline in Bai et al. (1996) is too long in comparison with its cross-
sectional radius. We therefore choose a simpler approach, by investigating the tem-
poral evolution of this flow. We suppose that the flow is spatially periodic and
we determine the wavelength of the waves by examining the experiment data. We
begin with the case studied in §4, for comparison with the experimental figure 6
of Bai et al. (1996), with [a, Vo] = [1.28, 10.00 cm s−1]. The experimental snap-shot
shows the coexistence of waves with different wavenumbers, from roughly 1.5 to
2.0. In table 1, theoretical growth rates and wave speeds, and amplitudes of the
final bamboo waves are listed against the wavenumber. Numerical simulations are
performed by initializing with wavenumbers 1.0, 1.5, 1.75 and 2.0, which is the range
relevant to the experimental situation. Very good agreement with the linear theory
has been obtained in each case. Beyond the linear regime, these core–annular flows
evolve into bamboo waves with constant amplitudes. Their final amplitudes are listed
in the bottom row of table 1. The final amplitude decreases with the wavenum-
bers. Our results show that bamboo waves arise for a range of wavenumbers, not
necessarily the one of largest growth rate; this explains in part the coexistence
of waves with very different wavelengths. These waves move with different wave
speeds and the overtaking of one crest by another is frequently observed in experi-
ments.

Figure 7 illustrates our wave shapes for these four wavenumbers in the nonlinear
regime. One of the prominent features is that although the solutions shown here are
not steady solutions, the interface shapes are nearly steady, and would appear to
be steady to an observer. There is an adjustment period, while the interface shape
changes from the initial cosine shape to the bamboo shape. Thereafter, changes
in the wave shape are not discernible to the unaided eye, while the accompanying
velocity and pressure fields continue to evolve. The steady solution calculated by Bai
et al. (1996) under solid-core and density-matching assumptions produces an interface
shape like the one found in their experiment. However, their interface shape is too
rounded and smooth compared to their experimental snap-shot, which shows an
almost symmetric form of the crest, with a pointed peak. The crest is slightly sharper
on the front and less sharp on its back. These details are successfully reproduced in
our results.

The corresponding PCAF base velocity profile is shown in figure 8(a). This is a
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Figure 7. Bamboo wave flow for Re = 0.93, a = 1.28, m = 0.00166, ζ = 1.1, J = 0.0795 and
K = −0.4552. The accompanying velocity and pressure fields are time-varying. The interface shapes
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Figure 8. (a) The velocity profile of PCAF for Re = 0.93, a = 1.28, m = 0.00166, ζ = 1.1, J = 0.0795
and K = −0.4552. (b) The calculated hold-up ratio h against time. Initially, the PCAF hold-up
ratio h = 7.60. As PCAF evolves into the nonlinear bamboo regime, h decreases first and reaches
the minimum value 1.80 at t = 30. Thereafter, it increases, reaching 10 at t = 100. The experimental
value is 1.39.

mixed flow, up for oil and water near the oil core, down for water near the pipe
wall. The positive flow rate in the up-flowing portion of water is cancelled in part by
the negative flow rate in the down-flowing water, and therefore the resulting water
flow rate is small. As a consequence, the PCAF hold-up ratio is 7.60, much greater
than the experimental value 1.39. The evolution of the hold-up ratio is shown in
figure 8(b) for perturbation wavenumber 2. The shape of the interface remains steady
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for time roughly larger than 40, after the initial adjustment from the linear regime,
and the bamboo wave in figure 7 describes the shape thereafter. The velocity field, on
the other hand, continues to evolve. The hold-up ratio decreases very slowly in the
linear regime (before time t = 20). The dramatic decrease of the hold-up ratio occurs
between t = 20 and t = 30, which corresponds to the transition of core–annular flow
from the linear regime to the nonlinear regime. It reaches the minimum value 1.80 at
time t = 30. During this period, the oil core is slowed down and accordingly the oil
flow rate Qo decreases; on the other hand, the water flow rate Qw increases because
the interface undulation is amplified and more and more water is trapped in the wave
troughs. The dramatic reduction of hold-up ratio occurs between t = 20 and t = 30.
Figures 5(b) and (c) show that this period corresponds to the transition period from
the linear regime to the nonlinear regime. The oil core is slowed down significantly
at this time. As the oil begins to drag less water, the down-flow of water becomes
more significant and plays a dominant role in determining the water flow rate. After
t = 30, the oil flow rate continues to decrease, but the water flow rate decreases much
faster. Therefore, the hold-up ratio rises again. At t = 100, it reaches 10, far away
from the experimental value 1.39.

By prescribing Vo to initialize PCAF, our simulation fails to predict the experimen-
tally measured value of the hold-up ratio. The principle reason is that the driving
pressure force is not big enough to support the up-flow of water. Consideration of a
limiting case can shed some light on this phenomenon. Suppose that the two fluids
are well mixed and let ρc be the average density:

ρc =
1

a2
(ρ1 + (a2 − 1)ρ2),

so that the force acting on the mixed fluid is

f + ρcg =
1

a2
((f + ρ1g) + (a2 − 1)(f + ρ2g)) =

f + ρ2g

a2
(K + a2 − 1).

This force must be positive for up-flow. The critical value of K is Kc = 1 − a2.
Applying parameters a = 1.28 and K = −0.4552 to the above, we have

f + ρcg =
f + ρ2g

a2
(−0.4552 + 1.282 − 1) = 0.1832

f + ρ2g

a2
.

f + ρcg is therefore negative when f + ρ2g < 0. Although in a core–annular up-
flow, the driving pressure gradient does not need to be so strong, the critical value
Kc = 1 − a2 provides a rule of thumb. The driving pressure is evidently not strong
enough at Reynolds number 0.93. The oil core in the nonlinear regime is slowed down
and can not provide the force to drag the water up as it does in PCAF, and hence
the water falls throughout the annulus. We come to the same conclusion as Bai et al.
(1992) when they compared PCAF to their experiments: bamboo waves require a
much greater pressure gradient to transport a given volume flux of oil than the ideal
case PCAF.

Since Vo and Vw are not constant quantities as PCAF evolves into the non-
linear regime, prescribing the experimental values Vo and Vw recorded in the nonlinear
regime to PCAF has potentially the consequence of underestimating the pressure
gradient of the corresponding PCAF, and hence the Reynolds number. In order to
compare with experiment, it will be wise to prescribe two quantities independent
of the state of flow. The parameter a is a good candidate. We can choose another
parameter such as the experimentally measured pressure gradient f. This quantity can
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Figure 9. (a) The velocity profile of PCAF for Re = 3.0, a = 1.28, m = 0.00166, ζ = 1.1, J = 0.0795,
K = −0.9993, wavenumber α = 2. (b) The calculated hold-up ratio h against time. At t = 0, the
PCAF hold-up ratio h = 2.61. As PCAF evolves, h decreases first and stabilizes around 1.46.

be manually controlled and made to stay constant. We believe that the simulation
started from PCAF can match the experiments if we know the experimental quantities
[a, f]. Unfortunately, the driving pressure gradient for figure 6 of Bai et al. (1996)
is not available, and we are not able to determine the PCAF by prescribing [a, f].
Rather, we solve an inverse problem here with a variety of larger Reynolds numbers
to find the experimental result.

The solution of the inverse problem is discussed next. Figure 9(a) shows the base
velocity field for PCAF at Re = 3.0, K = −0.9993. This is fully up-flow, in both
fluids. The PCAF hold-up ratio h is 2.61. We performed a calculation for this flow
from an initial amplitude A(0) = 0.005 on a 256 × 256 mesh. The wavenumber is 2.
The evolution of the hold-up ratio with the time is shown in figure 9(b). The hold-up
ratio decreases dramatically between t = 20 and t = 40. This period corresponds to
the transition from the linear regime to the nonlinear regime, as we reported before.
In the fully nonlinear bamboo wave regime, the hold-up ratio stabilizes around 1.46,
which is a reasonable approximation of the experimental value 1.39. A final remark
on the hold-up ratio: two additional cases were run, with K = −1.2 and K = −1.4455
(Reynolds number Re = 3.5 and Re = 4.0, respectively), and hold-up ratios of 1.46
and 1.45, respectively, were obtained.

Theoretical treatments such as the linear and weakly nonlinear theories apply only
for limiting situations, while experimental results do not reveal all the details of the
solution, and therefore it is the role of numerical simulations to fill this gap and to
provide insight into core–annular flows in the nonlinear regime. The interface position
at t = 100 is plotted in figure 10(a), and is very similar to the one in figure 7 for
α = 2.0, Re = 0.93, with the crest a little more pointed. To investigate the flow field
in more detail, we examine the streamlines and contours of the pressure field. For an
incompressible fluid, the axisymmetric stream function ψ is defined by the following
formulas:

u = −1

r

∂ψ

∂x
, v =

1

r

∂ψ

∂r
.
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Figure 10. Up-flow for Re = 3.0, a = 1.28, m = 0.00166, ζ = 1.1, J = 0.0795 and K = −0.9993.
(a) Interface shape at t = 100. (b) Pressure contours on the left half. Pressure field reaches the
maximum value on the upper side of the crest, at location A and the minimum value on the
down-side of the crest, at location B. Streamlines in the frame of reference moving with the oil core
are shown on the right half. The broken line represents the axis of symmetry.

This function is calculated numerically by a standard central difference scheme. In
the left half of figure 10(b), we plot the contours of the pressure field. In the water,
the pressure field reaches its maximum value above the crest, at location A and
its minimum value below the crest, at B. This confirms the schematic explanation
in figure 15.5 in Joseph & Renardy (1993). From below the crest to above, the
pressure increases monotonically in the water. Thus, the pressure contours are nearly
horizontal lines. The pressure field in the oil core is also shown in the figure. In
the right half of figure 10(b), we plot the streamlines in the frame of reference
moving with the oil core. The average velocity of the oil core is 0.685 at this time. C
denotes a line which divides the set of streamlines into two categories. One category
is inside the line and forms a recirculation zone; the other is outside. While some
of them are completely in the water, others enter into the oil on the upper side of
the crest and return to the water on the lower side of crest. The behaviour of these
streamlines is due to the fact that the waves move slowly compared to the oil core.
The wave speed c is 0.614, which is 10% smaller than the core velocity. The flow is
not stationary.

In the preceding Sections, our numerical method was validated against theory, and
simulation results were compared with experimental results. In the following, we delve
further into the physics of core–annular flow in the bamboo wave regime.
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Figure 11. Streamlines are drawn in the frame of reference fixed with the wall. Vortices appear near
the crests. (a) Re = 3.0 flow for one axial wavelength. (b) Zoom of dashed zone. (c) Re = 1.7 flow,
showing more pronounced vortices. (d) Schematic of velocity profiles in the water in the frame of
reference fixed with the wall. Upper plot shows the PCAF regime, and the lower plot shows mixed
flow for the bamboo wave regime. (e) Schematic in the frame of reference fixed with the core.

6.1. Vortex near the wall

We have seen in the previous Section that the pressure field reaches its maximum
value just above the crest and its minimum value just below (figure 10). These extreme
points are near the oil core but in the water. Therefore, the pressure pushes the water
toward the wall at the upper side of the crest and pulls it from the wall at the lower
side. This feature in the water creates a interesting pattern of flow if the wave crests
are near the pipe wall. At Re = 3.0, we find small vortices near the wave crests in
the frame of reference fixed with the wall (figure 11a, b). These vortices are more
prominent for smaller Reynolds number flows. For example, figure 11(c) shows the
case Re = 1.7, where the vortices are larger than at Re = 3 and located centrally
at the crests, while the vortices at Re = 3.0 are compressed against the pipe wall.
The schematic in figure 11(d) explains the origin of these vortices. The PCAF is an
up-flow. Since f+ρ2g < 0, the drag from the oil core plays an important role, and the
driving pressure gradient alone is not enough to sustain the up-flow in the water. As
the flow evolves into the nonlinear regime, the oil core is slowed down and therefore
it drags less water. The slowing down of the core is so significant that a mixed flow
is produced, in which the water falls down near the pipe wall and rises near the
core.

This argument accounts for the mixed flow, but does not explain why the vortices
appear at the crests and not at the troughs. To explain that aspect, we examine the
flow in the frame of reference where the core is fixed. In such a reference frame, the
core forms a stationary boundary, while the wall is moving downward at constant
speed. Consequently, a shear flow develops in the water, driven by a combination
of the downward wall speed and the downward action of gravity. The profile is
sketched schematically in figure 11(e). We note that mass conservation requires a
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larger downward speed at the crests, where the cross-section is narrow, than at the
troughs, where the cross-section is wide. Thus, if downward speeds larger than the
wall speed occur, they will first occur at the crests. When the frame of reference is
switched back to the laboratory frame (figure 11d), there is a mixed profile at the
crests, leading to the appearance of vortices.

6.2. Effect of a and temporally periodic flow

In the investigations of the previous Sections, the radius ratio is a = 1.28 so that
the oil core is relatively close to the pipe wall and the interaction between them is
strong, leading to the vortices found near the wave crests. In this Section, we address
what happens if the oil core is relatively far away from the pipe wall, so that the
water has a large ‘living room’. For this purpose, consider the experimental data point
no. 1 in figure 3, where a = 1.61, F = −1.0577, which correspond to J = 0.063354,
and K = −2.0303. The centreline velocity for PCAF is V ∗0 (0) = 83.91 cm s−1 so our
Reynolds number is Re1 = 3.73754. Linear theory indicates that the most dangerous
mode for this flow has wavenumber α = 2.4, corresponding to a wavelength L = 2.618.
The growth rate Re(σ) = 0.066 is much less than the a = 1.28 case, where the oil core
is closer to the pipe wall. We set the initial amplitude of perturbation A(0) = 0.01. The
evolution of the maximum amplitude A(t) with the time is plotted, on a log10-linear
scale, in figure 12(a). The calculation is carried out on a 256 × 256 mesh over one
spatial period on a domain [0, 1.61]× [0, 2.618]. The initial growth of the perturbation
compares well with the predicted linear theory, and then begins to deviate as the
amplitude increases. After roughly 40 s, a fully nonlinear evolution begins to take
shape. Since the initial amplitude is chosen relatively large, we do not expect the type
of exact replication of linear growth rates that we saw in figure 5. Linear theory yields
a wave speed 0.9542, and the numerical wave speed is 0.9431 initially, and 0.8068 at
time t = 200 (figure 12b).

The corresponding interface profiles are shown in figure 13 at t = 0, 20, 30, 60 and
120. At t = 20, the interface is still in the linear regime and has a sinusoidal shape.
The interface shape at t = 30 reveals some asymmetry, in that the interface crest is
narrower than the trough. This can be explained by the fact that the low-viscosity
water provides less resistance, making it easier for the high-viscosity oil to penetrate
into it. An analogy is that when inertia is important, a high-density fluid penetrates
easily into a low density-fluid. Soon after the flow enters the nonlinear regime, the
interface appears to reach its maximum amplitude and the shape reaches equilibrium.
The interfaces at time t = 60 and t = 120 are similar.

The most surprising feature of this flow is that it demonstrates temporal periodicity,
as evident from the evolution of the hold-up ratio vs. time (figure 12c). As the PCAF
evolves into the nonlinear bamboo wave regime, the hold-up ratio first decreases.
After a relatively long transition period, the hold-up ratio begins to oscillate around
2.15, with a well-defined temporal period of about 8.

The temporal periodicity of the flow is investigated in detail by viewing the
streamlines. Figure 14 shows the streamlines from t = 188 to t = 197. They constitute
one complete period and are drawn in the frame of reference moving with the core.
The flow regime is unsteady and we distinguish two qualitatively different streamline
patterns, with one large vortex or two small vortices in each trough. Let us begin the
flow pattern study from t = 188. We see one large vortex. Unlike the vortices observed
in the previous Section, this vortex will not rest at the same place but be convected
downstream by the flow (t = 189 and t = 190). The vortex is compressed by the flow
against the upper side of the crest and can no longer move downstream. Meanwhile,
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Figure 12. Up-flow for α = 2.4, Re1 = 3.73754, a = 1.61, m = 0.00166, ζ = 1.1, J = 0.063354, and
K = −2.030303. For the interfacial mode, theoretical linear growth rate is 0.066 and wave speed
0.954. (a) Maximum amplitude A(t) vs. time on a log10-linear scale. (b) Wave crest position vs. time.
(c) Hold-up ratio vs. time. The hold-up ratio oscillates around 2.15, with period approximately
8. Solid line represents theoretical growth and circles represent the calculation carried out on a
256× 256 mesh.
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Figure 13. Sequence of interface positions for Re1 = 3.73754, a = 1.61, m = 0.00166, ζ = 1.1,
J = 0.063354 and K = −2.030303: t = 0, 20, 30, 60 and 120. The calculation is carried out on a
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t =188 t =189 t =190 t =191 t =192

t =193 t =194 t =195 t =196 t =197

Figure 14. Up-flow for Re = 3.74, a = 1.61, m = 0.00166, ζ = 1.1, J = 0.063354 and
K = −2.030303. Unsteady regime, showing one complete temporal period. The period is about 8.

a small vortex is created on the other side of the crest (t = 191). While the upper-side
vortex continues to reduce its size, the lower-side vortex gains ground (t = 192 and
t = 193). At t = 194, the upper-side vortex has completely disappeared. The picture
at t = 196 shows one large vortex settling in the middle of the trough and completes
one whole period. We should remark that the one-vortex pattern corresponds to the
valley of the hold-up ratio chain (figure 12c) and the two-vortices pattern corresponds
to the summit. In the one-vortex pattern, the flow is well organized and so the water
flow rate increases (hold-up ratio decreases), while in the two-vortices pattern, the
flow is in disorder, and so the water flow rate decreases (hold-up ratio increases).

6.3. Effect of Re and temporally periodic flow

We continue the study of flow features, varying the Reynolds number and keeping
the others parameters constant. The calculations are performed for the most unstable
modes. The Reynolds numbers and the corresponding wavenumbers are listed in
table 2. The wavenumber for the fastest growing mode decreases as the Reynolds
number increases. The corresponding nonlinear wave shapes are shown in figure 15.
We find that the slow and long waves (low Reynolds number flow) have asymmetrical
crest shape, flat on the upper side and steeper on the lower side. This asymmetry
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Re 1.0 1.5 2.0 3.0 3.74

α 0.9 1.18 1.45 1.95 2.4

Table 2. The Reynolds numbers and the corresponding wavenumbers for the most unstable modes
according to linear theory, a = 1.61, m = 0.00166, ζ = 1.1, J = 0.063354 and K = −2.030303.
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Figure 15. Up-flow for a = 1.61, m = 0.00166, ζ = 1.1, J = 0.063354 and K = −2.030303.

is due to the effect of the buoyancy. In fast flow (large Reynolds number flow), the
asymmetric effect of buoyancy is relatively less important, as evident in the almost
symmetric shape of wave crests for Re = 3.74.

Figures 16 and 17 illustrate the interface position, together with streamlines on the
right half and pressure contours on the left half, only in the water. We observe no
vortex in the frame of reference fixed with the pipe wall. The streamlines here are
drawn in the frame of reference moving with the oil core. Low Reynolds number flows
(Re = 1.0 and Re = 1.5) are similar to the case a = 1.28, with one large vortex settling
in each wave trough. The pressure contours are almost horizontal, with maximum
(minimum) value on the upper (lower) side of the crest. While the Re = 2.0 flow
keeps almost all these features, we observe a change in the pressure pattern, with the
appearance of some pressure summits and valleys. At Re = 3.0, figure 17 shows the
same type of temporally periodic streamline pattern as Re = 3.74 in figure 14. The
temporal period is about 10. A pressure valley occurs in the large vortex, near its
centre (t = 152), while a pressure summit appears between the two small vortices and
seems to assume the role of keeping them apart (t = 158). The evolution of hold-up



144 J. Li and Y. Renardy

Re=1.0

Re=1.5

Re=2.0

Figure 16. Up-flow for Re = 1.0, 1.5 and 2.0, a = 1.61, m = 0.00166, ζ = 1.1, J = 0.063354 and
K = −2.030303. Steady regime.

ratio of these flows is shown in figure 18. While the periodicity has started to appear
in low Reynolds number flow (Re = 1.0, 1.5 and 2.0), it becomes quite marked in the
Re = 3.0 flow.

7. Down-flow
In down-flow, the pressure and buoyancy forces of oil oppose those of water. This

tends to compress, even eliminate, bamboo waves. The stems thicken into columns
of oil which are perturbed by corkscrew waves from place to place. This flow type
is called ‘disturbed core–annular flow’. It was first reported in the experiment of Bai
et al. (1992). The down-flow with parameters Re = 1.2, a = 1.7, m = 0.00166, ζ = 1.1,
J = 0.06 and K = −0.542709 was investigated by Renardy (1997) in the context of
non-axisymmetric perturbations, which was earlier studied by Hu & Patankar (1995).
They showed that mode 1 has the largest growth rate at α = 0.531 and mode 0 has
much smaller growth rates, though it has two bands of unstable wavelengths, one
for long waves due to interfacial tension and the other at O(1) wavenumbers due to
shear. They showed that the wavelengths and wave speeds agree with the experimental
values. We investigate this flow under the axisymmetric assumption. Linear theory
indicates that the most dangerous axisymmetric mode has wavenumber 1.4, and we
treat core–annular flow seeded with this eigenmode. We cover a range of Reynolds
numbers while keeping the relative driving forces K constant. We expect that the
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t =156 t =158 t =160

Figure 17. Up-flow for Re = 3.0, a = 1.61, m = 0.00166, ζ = 1.1, J = 0.063354 and
K = −2.030303. Unsteady regime, showing one complete period. The period is about 10.

Re 1.2 2.0 2.5 3.0

α 1.4 1.675 1.975 2.625
Re (σ) 0.0207 0.0355 0.0415 0.0455
Amplitude 0.133 0.1412 0.166 0.155

Table 3. Reynolds numbers and corresponding axisymmetric wavenumbers of largest growth
rates, for a = 1.7, m = 0.00166, ζ = 1.1, J = 0.06 and K = −0.542709.

asymmetric effect of buoyancy on the core–annular flow is less important in fast flow
(high Reynolds number). The Reynolds numbers and the corresponding wavenumbers
of the most unstable mode and the growth rates according to linear theory are listed
in the table 3. The wavenumber increases, and hence the wavelength decreases, with
the Reynolds number. Growth rates increase with the Reynolds number.

The base velocity profile for PCAF (see equation (3.3)) does not depend on the
parameters Re and J , and all the flows in table 3 share the same profile shown in
figure 19. This is a mixed flow in the frame of reference moving with the oil core,
because the water is heavier than the oil and so falls faster than the oil near the core.
On the other hand, the water velocity must match the boundary condition near the
pipe wall and therefore it moves slowly near the wall. This down-flow configuration of
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Figure 18. Hold-up ratio for up-flow a=1.61, m=0.00166, ζ=1.1, J=0.063354 and
K=−2.030303. The Reynolds number are (a) Re=1.0, (b) Re=1.5, (c) Re=2.0 and (d) Re=3.0.
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Figure 19. PCAF velocity profile for down-flow for a = 1.7, m = 0.00166, ζ = 1.1, and
K = −0.542709. The PCAF base velocity does not depend on Re and J .

PCAF would introduce some significant consequences for the corresponding nonlinear
waves. Numerical investigation of these flows is performed on a 256× 256 mesh. We
set the initial amplitude A(0) = 0.01. These waves attain an equilibrium shape soon
after they evolve into the nonlinear regime, as shown in figure 20. For slow flow,
Re = 1.2, the saturation amplitude is small, and the interface is merely perturbed
from the PCAF form. However, the asymmetry of the crest is prominent, due to the
effect of buoyancy of oil relative to water, which flattens the up-side (back) of the crest
and steepens the down-side (front) of the crest. When the Reynolds number increases,
inertia gains importance and reduces the asymmetric effect due to the buoyancy, the
wave amplitude increases and the wave shape becomes more symmetric. Differences
in wave shape between up- and down-flow vanish for Re = 3.
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Figure 20. Down-flow for a = 1.7, m = 0.00166, ζ = 1.1, J = 0.06 and K = −0.542709.

When the driving pressure gradients are relatively large and the flow is fast, Bai et al.
(1992) mention that the difference between up- and down-flow vanishes. Here, we have
kept the driving pressure forces constant (K constant), so that the flow is faster when
the viscosity reduces (Reynolds number rises). We find that the down-flow pattern
is qualitatively different from the up-flow one, even for fast down-flow where wave
shapes look like the up-flow ones. In figure 21, we plot the contours of the pressure
field in the left half and the streamlines in the right half. For Re = 1.2, we observe a
vortex on the front side (lower side) of crests in the frame of reference moving with
the oil core. This vortex is located in a strong shear layer and its formation is due
to the mixed flow profile that we described before. Accordingly, the pressure reaches
the minimum value at the centre of this vortex. The pressure maximum value is on
the back of the wave crest. Compared to the up-flow wave, the extremal values of
the pressure have switched their locations. These features are retained for the higher
Reynolds numbers we have examined, in contrast to the up-flow case where the flow
patterns for Re = 3.0 and 3.74 are different. In summary, slow down-flow leads to
low-amplitude asymmetric waves. Fast down-flow leads to bamboo waves but with
the pressure field qualitatively different from the up-flow bamboo waves.

8. Conclusion
Our numerical simulation of bamboo waves represents an improvement on the

simulations of Bai et al. (1996), who solved for the steady solution of the governing
equations, assuming density matching, and a solid core. We have relaxed those
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Figure 21. Down-flow for a = 1.7, m = 0.00166, ζ = 1.1, J = 0.06 and K = −0.542709. Pressure
contours on the left half and streamlines in the frame of reference moving with oil core on the right
half.

assumptions, allowing for different densities for the two viscous liquids, and we use
the experimental parameters for the simulation of nonlinear regimes. We assume
axisymmetry. Our initial condition is seeded with an eigenmode of largest growth
rate, and results for other modes are also shown to lead to bamboo waves. The
bamboo waves arise at the fully nonlinear saturation of the initial value problem. We
have in addition reproduced the unique bamboo structure of the waves with pointed
peaks. The question of how to choose the model parameters is investigated and has
revealed an alternative approach where an inverse problem is solved and predicts a
satisfactory value for the experimental hold-up ratio.
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